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Abstract: The noise in position time series of 568 GPS (Global Position System) stations across North
America with an observation span of ten years has been investigated using solutions from two
processing centers, namely, the Pacific Northwest Geodetic Array (PANGA) and New Mexico Tech
(NMT). It is well known that in the frequency domain, the noise exhibits a power-law behavior with
a spectral index of around −1. By fitting various noise models to the observations and selecting
the most likely one, we demonstrate that the spectral index in some regions flattens to zero at long
periods while in other regions it is closer to −2. This has a significant impact on the estimated linear
rate since flattening of the power spectral density roughly halves the uncertainty of the estimated
tectonic rate while random walk doubles it. Our noise model selection is based on the highest
log-likelihood value, and the Akaike and Bayesian Information Criteria to reduce the probability of
over selecting noise models with many parameters. Finally, the noise in position time series also
depends on the stability of the monument on which the GPS antenna is installed. We corroborate
previous results that deep-drilled brace monuments produce smaller uncertainties than concrete
piers. However, if at each site the optimal noise model is used, the differences become smaller due to
the fact that many concrete piers are located in tectonic/seismic quiet areas. Thus, for the predicted
performance of a new GPS network, not only the type of monument but also the noise properties of
the region need to be taken into account.

Keywords: GPS; geodetic time series; stochastic noise; episodic tremor and slip; monuments; tectonic
rate; uncertainty

1. Introduction

Space geodetic techniques, and GNSS (Global Navigation Satellite System) in particu-
lar, are being used in the study of dynamics of the Earth’s crust [1]. GPS stations have been
installed worldwide to measure their changes in position over time with millimeter-level
accuracy, which is associated with a number of geophysical phenomena such as plate mo-
tion [2–4], earthquakes (i.e., pre-, co-, and postseismic offsets and transients) [5,6], glacial
isostatic adjustment [7–10], ocean tide loading [11–15], and atmospheric loading [16,17].
These geophysical phenomena can be described by a trajectory model (also called func-
tional model) [18–20] and the remaining difference between the model and observations is
noise, which is assumed to be a sum of stochastic processes. It is well known that noise
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is temporally correlated, for which power spectral density follows a power-law behavior
with a spectral index of approximately −1 [21,22]. In addition, Langbein (2012) [23] and
Dmitrieva et al. (2015) [24] found that random walk (RW) is present in some of the GPS
time series. The effect of RW is almost a doubling of the uncertainty of the estimated linear
motion [23]. On the other hand, He et al. (2019) described the analysis of 110 stations from
the global IGS core network with more than 12 years of observations for which the power
spectral density seems to flatten at low frequencies for 3–5% of horizontal components and
around 12% for the vertical component [25]. The result is a reduction of the trend uncer-
tainty by a factor of approximately two. In this research, we investigate the flattening of the
power spectral density in some time series of the 568 permanent GPS stations around the
USA (United States of America) and Canada, e.g., those blanketing the Pacific Northwest
and the central western coast of the USA, from Vancouver Island to southern of California,
with a concentration of stations around the Los Angeles area monitoring the San Andreas
fault. A small amount of flattening of the power spectral density at low frequencies is also
caused by the estimation of the linear trend [26,27]. Therefore, only strong flattening that
starts at a period of 1–2 years will be considered. Flattening that starts at a longer period
will be assumed to be artificial or undetectable.

2. Materials and Methods: GPS Data Processing, Time Series Analysis, and
Simulation Experiment
2.1. GPS Data Processing

We used data from 568 continuously operating GPS receivers distributed over the
United States, including Alaska. These data were used to compute time series consisting of
position estimates with 1-day sampling by the analysis centers—PANGA/CWU (Pacific
Northwest Geodetic Array/Central Washington University) and New Mexico Tech (NMT).
Their solutions are given in the global International Terrestrial Reference Frame ITRF2008
reference frame [28]. The analysis center CWU computes the daily positions using the
Precise Point Positioning method using the GIPSY software developed by NASA’s Jet
Propulsion Laboratory (JPL), which also provides the necessary satellite ephemerides [29],
clock corrections, and wide-lane phase bias estimates [30]. Note that the station positions
were loosely constrained during the initial estimation and subsequently transformed into
the International Terrestrial Reference Frame (ITRF2008) using only the translation and
rotation [28]—but not scale—components of the JPL-provided Helmert transformations. On
the other hand, NMT processing was performed using the software GAMIT/GLOBK [31,32]
utilizing the same stations in North America as those with the PANGA processing, but
additional stations in other parts of the world were also included for the stability of the
reference frame. The Vienna Mapping Function 1 (VMF1) grid was used in both processing
by PANGA and NMT for handling the troposphere delay [33]. All common parameters
used in both processing steps are explained in Herring et al. (2016) [34]. No common mode
error filtering is used in any processing. It is important to emphasize that GAMIT double
differencing does not remove common mode error. The network of GPS stations selected
by NMT and PANGA is large (a quarter of the Earth’s surface), which dilutes the strong
common mode error that is detectable over smaller regions. The final processing of these
time series described by Herring et al. (2016) [34] rotates the loosely constrained solutions
provided by PANGA and NMT in the NAM08 reference frame using GLOBK [31,32].

Our study focuses only on the PANGA and the NMT solution (the original time series
are cwu.final_nam08.pos and nmt.final_nam08.pos). For both the PANGA and the NMT
solutions, the baseline lengths are their uncertainties do not change between the “loose”
solutions submitted by PANGA and NMT and the solutions rotated/translated in the
NAM08 reference frame. The difference with the processing preformed at NMT is mainly
due to how the scale parameter is handled. The strategy in the latter includes the scale
in the Helmert transformation, whereas the scale is not estimated directly in the former.
Montillet et al.’s (2018) [35] study emphasized that the choice of including a radial scaling
degree of freedom during daily reference frame realization primarily impacts the average
network radial height and produces apparent height anomalies in excess of 5 mm that
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persist for months. A comprehensive discussion about the Helmert transformation and the
scale parameter can be found in references [34,35].

In our analysis, the 568 stations have time series that began on 1 of January 2008 and
ended on 1 January 2018. Our reason for choosing a fixed data time span is to reduce the
differences between random models at different time scales. We also choose GPS stations
with very few data gaps, less than 8%, which reduced the total number to 568 sites. In
Appendix A, Table A1 shows that the percentage of the 568 permanent GPS stations are
listed with less than a 3% data gap for each time series. As a result, more than 90% of the
stations have more than 9.7 years of data. The average, maximum, and minimum data
gaps of the 568 stations are also listed in this table to supply information (see Table A1 in
the Appendix A) on the quality of the selected time series used throughout this study.

The GPS stations analyzed in this study have large diversity of monuments on which
the GPS antenna has been installed. The metadata file (or log file) associated with each
station provides a description of the monument, often referred to as mast, pillar, roof
top, tower, or tripod [36–38]. In this study, we classified all monument types into four
categories: concrete piers (CP), deep-drilled brace monument (DDBm), shallow-drilled
brace monument (SDBm), and roof top/chimney (RTC). This classification follows previous
studies [39,40]. Concrete pier (CP) is a pillar that can reach several meters attached deeply
into the ground (up to 10 m below the surface). DDBm is braced monument where four
or five 2.5 cm-diameter pipes are installed and cemented into inclined boreholes with the
antenna attached at ~1 m above the surface [40,41]. The pipes are also attached deeply
below the surface (up to ~10 m) using heavy motorized equipment. SDB refers to the
type of equipment attached to the surface (<1 m-deep) using a hand-driller. The fourth
category (RTC) gathers the antennas installed on the top of buildings sometimes using a
mast attached to a wall, or with a concrete support. Note that our classification is based on
the monument’s description included in each log file available for each station (Table A1 in
Appendix C gives more details on the monument type of the analyzed 568 sites).

2.2. GPS Time Series Analysis

First, outliers were removed from the time series. Outliers are observations that are
larger than 3 times the interquartile range of the residual time series [42]. Second, the
parameters of the trajectory model were estimated with weighted least-squares while
the parameters of the model that describe the noise ηi were estimated using maximum
likelihood estimation [18,19]. For this estimation process, we used Hector software [43].

The trajectory model y(ti) is a linear sum of the tectonic rate, seasonal signals, co-
seismic offsets, and random stochastic processes (ei), see Bevis et al. [20]:

y(ti) = a + b(ti − t0) +
2
∑

j=1
[cj cos(2π f jti) + dj sin(2π f jti)]+

ng

∑
k=1

gk H(ti − tk) +
nl
∑

l=1
Sltanh((ti − tl)/Tl) + ei

(1)

where a is the initial position at the reference epoch t0, b is the rate, cj and dj are the periodic
motion parameters (j = 1, 2 for annual and semiannual seasonal terms, respectively). The
offset term gk can be caused by earthquakes, equipment (environment) changes, or human
intervention, in which it is the magnitude of the change at epochs; is the total number
of offsets; H is the Heaviside step function. The time of known offsets tk are retrieved
from the station’s metadata. Finally, the automatic offset detection algorithm developed by
Fernandes and Bos (2016) is applied to detect undocumented offsets [44].

The Cascadia subduction zone is a convergent plate boundary that stretches from
northern Vancouver Island in Canada to northern California in the United States. As we
model and study time series of stations located in the Pacific Northwest including the
Cascadia Mountains, specific events must be modeled, such as the Episodic Tremor and Slip
(ETS) [45–48], for which we used the hyperbolic tangent function [49]. The amplitude of
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this function is described by Si. Finally, ei describes the noise/random stochastic processes.
The time of the slow slip event and the delay of the postseismic deformation are required
as input parameters for the estimation of the ETS using Hector [49] with a hyperbolic
tangent of which the shape is prescribed by the time the ETS event occurred and its width
(see in Appendix B). The times of the slow slip events can be requested from the Pacific
Northwest Geodetic Array website or by a careful analysis of the time series with some
training. The start of a slow slip event is evaluated via the correlation of seismic data
together with a careful check of each time series [50]. In the remainder of this work, we use
four delays—namely 30, 80, 100, and 130 days—for the postseismic deformation, because
it is difficult to precisely estimate the duration of crustal decay. Note that these delays
are conservative numbers knowing that the repetition of the ETS events is ~14 months,
as evaluated by previous geophysical studies of Cascadia [35,50]. These values represent
a tradeoff in not modeling enough the phenomenon, and in contrast, absorbing other
geophysical phenomena due to an overestimation of the decay time [50–52]. Figure 1
displays an example of the functional model including slow slip events superimposed on
the observations at station ALBH. In this example, we use a 100-day decay time scale, and
at the bottom are the residuals of the time series.
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Figure 1. GPS daily position time series for the North (left) and East (right) components of station ALBH with a functional
model on top (red line) including a 100-day postseismic relaxation (the bottom figures are the residuals).

2.3. Stochastic Model Selection Criteria and Simulation Experiment

Power-law noise with a spectral index of −1 is called flicker noise (FN). Random walk
(RW) noise has a spectral index of −2. Generalized Gauss Markov (GGM) noise is similar to
power-law noise (PL) but flattens below a specified frequency. As noted in the introduction
and shown in the following sections, the selection of the correct noise model has a significant
influence on the trend uncertainty [21,23,53,54]. The theory of selecting the best model to
describe the observation has a long history and many research areas simply use the Akaike
or Bayesian Information Criterion [55,56]. However, Langbein (2004) followed a more
empirical approach by performing Monte Carlo simulations using synthetic noise, and in
this way, determined how much the difference between two log-likelihood values of two
competing noise models must be before one can confidently choose one over the other [42].
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In the report by Langbein (2004) and Santamaría-Gómez et al. (2011), the default noise
model for these simulations, or the null model, was in all cases a random walk plus white
noise and it was determined how much the log-likelihood value needed to be higher before
one could accept another noise model as being better with 99% confidence [42,57]. The
log-likelihood value will be abbreviated as MLE since it is estimated with the maximum
likelihood method. Differences between two MLE values are represented as dMLE. The
likelihood function represents a probability, although not normalized. Therefore, MLE and
dMLE are logarithms of the probabilities and have no units.

We repeated the simulations using 5000 daily time series with a length of 10 years of
synthetic random walk + white noise, each with amplitudes of 1 mm/yr0.5 and 0.5 mm,
respectively—that is, for 5000 simulations, the dMLE for which there are 50 values greater
is identified as the 99% level to reject the null hypothesis. The results are shown in Table 1.

Table 1. Comparison of Monte Carlo simulation results of Langbein (2004) and our results (He et al.).
Each column lists the dMLE value representing the needed difference in MLE value to avoid choosing
the wrong noise model instead of RW with 99% confidence.

Langbein (2004) He et al.

RWFN 3.4 3.7
GGM 7.0 10.9

PL 4.1 5.7

The Bayesian Information Criterion (BIC) and BIC_tp are defined as follows (He et al.,
2019) [25]:

BIC = −2MLE + v ln(N) (2)

BIC_tp = −2MLE + ln(
N
2π

)v (3)

where MLE = ln(L), the log-likelihood value; ν is the number of parameters in the noise
model; N is the number of observations. The noise model with the lowest BIC value is
selected. For 10 years of daily observations, ln(N) = 8.2. Following Langbein (2004) and
Santamaría-Gómez et al. (2011) [42,57], we can rewrite the difference in BIC values as a
difference in MLE values:

4.1(vn − vb) + (MLEb − MLEn) > 0? (4)

where vn and vb are the number of parameters and MLEn and MLEb are the MLE values
of the null and new models, respectively. If this criterion is larger than zero, then the
new noise model (b) is more likely than the null model (n). RWFN and PL have one more
parameter than RW while GGM has two more parameters, resulting in correction values of
4.1 and 8.2. For example, the MLE value for the GGM model needs to be 8.2 higher than
that of RW before one can be confident that it is a better representation of the noise. These
correction values are similar to the values listed in Table 1. For BIC_tp, the weight factor
for each extra parameter in the noise model is 3.2 for time series with a length of 10 years
instead of 4.1.

As in He et al. (2019) [25], we only consider the detection of GGM to be the most
likely noise model significant if φ < 0.98; this parameter is also estimated by Hector. If
this condition is not met, then the second most likely noise model is chosen. He et al.
(2019) explained that this condition implies that we only detect GGM noise with flattening
that already starts around a period of 1 year [25]. For the rest of this research, this extra
condition of φ < 0.98 was always applied in addition to satisfying Equation (4).

The values of the parameters in the noise models used in the Monte Carlo simulations
of Langbein (2004) [42] are slightly different from the noise values discussed here. To
ensure the most realistic results, we determined the mean values for each estimated
noise model for the horizontal and vertical components for our 5000 time series, see
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Tables 2 and 3. For each noise model, 5000 synthetic noise time series were generated. Each
of them was analyzed using FN + WN (Flicker Noise + White noise), RW + FN + WN
(Random Walk + Flicker Noise + White noise), GGM + WN (Generalized Gauss Markov +
White Noise), and PL + WN (Power-law + White noise).

Table 2. Parameters used to create the various synthetic noise time series. These values correspond
to those observed in the real TS, horizonal component. Note that for GGM and PL, the unit of the
noise is mm/yr−0.25κ.

Noise Model κ σw (mm) σfn (mm/yr0.25) σrw (mm/yr0.5) 1 − φ

FN + WN 0.6 1.9

RW + FN + WN 0.7 1.7 1.3

GGM + WN −1.2 0.7 2.6 0.035

PL + WN −0.8 0.4 2.1

Table 3. Same as Table 2 but for the vertical component.

Noise Model κ σw (mm) σfn (mm/yr0.25) σrw (mm/yr0.5) 1 − φ

FN + WN 0.8 16.4

RW + FN + WN 1.6 13.0 3.3

GGM + WN −1.2 0.0 26.5 0.100

PL + WN −0.8 0.2 13.3

Instead of tabulating the 99% quantile of the difference in MLEb − MLEn, we show all
differences as box–whisker plots in Figures 2 and 3. Thus, if all values in the box–whisker
plots were negative, one could be 100% sure that using the selected noise model (the
noise model we think is correct) with the highest MLE value would indeed reflect the
true underlying noise models (better than the alternative noise models). One can see that
this is not always the case. Applying the BIC correction (BIC and BIC_tp), resulting in the
blue box–whisker plots, reduces the MLE of noise models with more parameters than the
test/null model and increases it for models with fewer parameters. Therefore, BIC helps
to detect FN noise while reducing the rate of detecting GGM noise. The red box–whisker
plots represent the results of using BIC_tp. BIC helps increase the number of true positives
(the true noise model was selected) and reduce the number of false positives (the false
noise model was selected). Overall, its performance is better than BIC; thus, it will be used
for the rest of this research.
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Figure 2. For each of the noise models, FN, RW + FN, GGM, and PL 5000 synthetic TS were generated.
The black box–whisker plots show how much the MLE of another noise model differs from the true
one (MLEb − MLEn). The blue and red box–whisker plots are the same after applying the BIC and
BIC_tp corrections.

Figure 3. Same as Figure 2 but for the vertical component.
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From Figures 2 and 3, it can be concluded from the RW + FN panels with positive
box–whisker plots (MLEb − MLEn > 0) that in many cases, PL + WN noise is detected
while in fact, the true underlying noise is RW + FN + WN [23]. On the other hand, if RW
+ FN + WN noise is detected, then we have high confidence that it is correct since false
positives are extremely rare—see also He et al. [25]. Important for this research is the fact
that for synthetic GGM, the MLE of the other noise models is always lower than that of
GGM. In addition, from the other panels of Figures 2 and 3 one can also see that GGM is
almost never selected when the underlying noise is not GGM. Thus, we can conclude with
great confidence that any detection of GGM using BIC or BIC_tp is correct.

The random walk + flicker + white noise model was used by Langbein and Svarc [40]
in the analyses of their time series. However, the analyses of our time series show that some
flatten at low frequencies, which can be better described by a GGM noise model. These
different conclusions might be caused by the fact that Langbein and Svarc [40] analyzed
regionally filtered time series, whereas we are looking at unfiltered time series that are
noisier and in which the smaller random walk signal might be hidden.

Note that Santamaría-Gómez et al. (2011) [57] concluded that using neither AIC nor
BIC is recommended as a means to discriminate between models. Using similar Monte
Carlo simulations, the reader should be convinced that for the time series of a length of
10 years used in this research, the performance of BIC and BIC_tp is actually similar to
that of using the approach of Langbein and Svarc (2019) [40], leaving the general debate of
using or not using the information criteria in the selection of the stochastic noise model for
the future.

3. Results and Discussion with Real GPS Time Series
3.1. Multitaper Analysis

We have previously discussed the selection of noise models based on log-likelihood
values. However, we can also illustrate the difference in stochastic properties of the noise by
power spectral density (PSD) plots. Here, we used the Welch method to compute the PSD.
We further used the multitaper method of Thomson [58], using the software of Prieto [59],
which produces increasingly accurate estimates of the power at low frequencies [60].
Figure 4 shows three examples that illustrate the different behavior at low frequencies.
For some stations, a flattening of the power spectrum can be observed, while for other
stations, the slope of the power spectra increases at low frequencies and is better described
by a random walk noise model. For the left and center panels in Figure 4, the RW part
of the RW + FN + WN model was very small and resulted in very similar power spectra
as FN + WN.

Figure 4. Power spectral density plots computed using the multitaper method for three stations. Each of them shows a
different behavior at low frequencies.
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3.2. Episodic Tremors and Slip

In this research, the focus is on the noise within GPS time series. However, the trajec-
tory model should be accurate in order to ensure that the separation between geophysical
processes and other noise sources is realistic. This is especially important for stations that
experience episodic tremors and slip (ETS) events. ETS events are restricted to 20 stations
located specifically in the Cascadia area. Table 4 displays the results of modeling or not
the ETS events using 100 days of postseismic decay time scale for the two processing
centers, PANGA and NMT. Tables A2 and A3 in Appendix A provide more details on the
stochastic noise models’ behavior of each East North Up (ENU) component. Note that
the results using 30, 80, and 130 days of postseismic relaxation are included in the ap-
pendices (see Table A4), but do not vary significantly compared with the results shown in
Table A4. It is worth emphasizing that there is a slightly higher frequency rate of selecting
the RW + FN + WN model, for both PANGA and NMT processing, when including a small
postseismic relaxation delay (i.e., 30 or 80 days) in the functional model, which indicates
that the remaining relaxation phenomenon is modeled as RW noise.

Table 4. Comparison of modeling the ETS events (NoETS). The statistics are realized using 20 stations in the Cascadia
subduction zone, including the North, East, and Up components. The postseismic relaxation is equal to 100 days in our
model. The results are shown using either the AIC or BIC_tp criterion.

Solution
Model

NoETS ETS

PANGA NMT PANGA NMT

AIC BIC-tp AIC BIC-tp AIC BIC-tp AIC BIC-tp

RW + FN + WN 11.67% 10.00% 6.67% 5.00% 3.33% 1.67% 0.00% 0.00%

FN + WN 16.67% 35.00% 28.33% 41.67% 15.00% 23.33% 23.33% 31.67%

GGM + WN 38.33% 36.67% 41.67% 40.00% 58.33% 58.33% 51.67% 51.67%

PL + WN 33.33% 18.33% 23.33% 13.33% 23.33% 16.67% 25.00% 16.67%

From Table 4, we can see that there is a much higher chance of selecting an RW compo-
nent (i.e., the RW + FN + WN model) in the stochastic model for both processing strategies
without modeling the ETS. Looking at the results using the BIC_tp, the percentages are
10.00% and 5.00% for PANGA and NMT, respectively, whereas with the ETS model, the
percentages decrease to 1.67% and 0.00% for PANGA and NMT, respectively. The results
are similar using the AIC. In addition, we can see that the AIC selects slightly more often
the RW component in the case of PANGA processing when there is no modeling of the
ETS events. This result echoes the conclusions in He et al. (2019) [25]. where it was found
that the AIC criteria were slightly more sensitive to the detection of the RW component.
Furthermore, with ETS modeling, the proportion of GGM + WN increases, from approxi-
mately 37% to 58% and approximately 41% to 51% for the PANGA and NMT solutions,
respectively. In addition, modeling the ETS has a significant effect on the selection of the
stochastic noise model of the GPS time series, as shown in Table A5 (Appendix A). As
an example, the model changes when including or not including the ETS events, which
is approximately 35% and 40.0% for PANGA and NMT, respectively, using the AIC, and
approximately 21.7% for both PANGA and NMT with the BIC_tp criteria. In particular,
for the variation in the stochastic noise models, the GGM + WN model more likely fits the
time series of the Up component than the other models for the 20 sites considered here.
Tables A2 and A3 show that the changes in stochastic noise models mainly occurred in the
East and North components.

3.3. Spatial Variations Analysis

In this section, we use the 568 stations located in North America and displayed in
Figure 5. To process the time series and select the optimal stochastic noise model using the
AIC and BIC_tp criteria, we follow the same approach described in the previous sections.
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Note that for the stations experiencing ETS events in the Cascadia region, the postseismic
relaxation was set up to 100 days to be consistent with our results established in the
previous section. In addition, we implement automatic offset detection on the GPS residual
time series discussed in Fernandes and Bos (2016) [44].

Figure 5. Spatial distribution of the selected noise models using AIC (there is slight difference with
BIC_tp, the main difference is that AIC is slight sensitive to the RW noise, as shown in Table 5).

Table 5. Summary of cases for which AIC and BIC_tp gave different results. Listed here are
the selected noise models for each IC and how many times this occurred for the PANGA and
NMT solutions.

AIC BIC_tp PANGA NMT

RW + FN + WN FN + WN 17 15

GGM + WN FN + WN 5 9

The selected stochastic noise models using AIC and BIC_tp over 568 stations show
high consistency (approximately 98.7% and 98.6% for the PANGA and NMT solutions,
respectively). The significant differences in the selection of the stochastic noise model
between AIC and BIC_tp applied to the PANGA and NMT solutions are displayed in
Table 5. We can see that AIC is generally more sensitive to RW noise in the selection of
the RW + FN + WN and GGM + WN models, which supports the previous conclusions
mentioned in He et al. (2019) [25]. Table 6 shows the percentage of stochastic noise models
selected over the 568 stations for the PANGA and NMT solutions with only the AIC (for
ENU and the average of the 3 components). The difference in terms of percentage is much
higher in the Up component, where, for the NMT solutions, the GGM + WN model is more
likely selected, and the PL + WN for the PANGA time series.

Table 6. Statistics on the optimal stochastic noise model selection (AIC) with 568 stations in North America (PANGA and NMT)
.

Optimal
Stochastic

E N U ENU

PANGA NMT PANGA NMT PANGA NMT PANGA NMT

RW + FN + WN 9.0% 8.6% 13.7% 12.3% 0.2% 0.2% 7.6% 7.0%

FN + WN 46.0% 41.0% 40.7% 44.9% 3.2% 3.2% 29.9% 29.7%

GGM + WN 6.7% 8.5% 10.2% 9.0% 15.5% 34.2% 10.8% 17.2%

PL + WN 38.4% 41.9% 35.4% 33.8% 81.2% 62.5% 51.6% 46.1%
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The results in Table 6 also emphasize that the RW + FN + WN is approximately 8–14%
for the horizontal components and only approximately 0.2% for the Up component; this
is also demonstrated in Figure 5. Spatial distribution of the selected noise models using
AIC (there is slight difference with BIC_tp—the main difference is that AIC is a little more
sensitive to the RW noise, as shown in Table 5). The RW + FN + WN noise is much less in
the Up component. In fact, we can see that all four models are selected in the horizontal
components, whereas the vertical components have mostly PL + WN and GGM + WN
noise models. This result holds in the analysis of the time series of both processing centers.
This difference can be attributed to the fact that the vertical component is generally much
noisier (~3 times greater) than the East and North components [22]. He et al. (2019) [25]
concluded that GGM + WN fits slightly better than the other noise models for the vertical
component, which is also supported by our results.

To further analyze the potential correlation of sites showing RW noise with geophysical
phenomena, we highlight the sites for both NMT and PANGA solutions in Figure 5
(i.e., red dot for the RW + FN + WN). Most are located near the coasts (distance <10 km
from the shoreline—see Figure A1 in Appendix A, which shows the spatial distribution of
the RW sites for both PANGA/NMT) and in known tectonically active areas: the Cascadia
subduction zone and San Andreas strike-slip fault. This result is in agreement with our
results shown in the previous section, where we demonstrated that when the functional
model does not completely capture all geophysical signals (due to earthquakes and/or
postseismic deformation and possibly generates short-duration transient signals), the
algorithm estimates higher amplitude RW noise than in much less tectonically active
areas. The results also show that the detected RW amplitudes are larger than 0.5 mm/yr0.5.
(see Figure A1 and Table A6 in Appendix A).

3.4. Relation between Type of Noise and Type of Monument

First, we analyze the velocity uncertainty of the 568 GPS stations related to type of
monument. Figure 6 shows the spatial distribution of the velocity uncertainty with the
optimal stochastic noise model, using AIC, for PANGA and NMT. From Figure 6, we can see
that the Nevada/Idaho and Utah regions are quieter (i.e., lower uncertainty value) than the
other areas, especially for the NMT solutions. In contrast, the Washington/Oregon region
is noisier (i.e., higher uncertainty value). It can also be observed that there is no obvious
pattern between types of monuments and velocity uncertainty. DDB monuments have the
largest percentage of random walk component according to Figure 6. These monuments are
mostly located along the San Andreas fault in central and southern California. Therefore,
they display larger noise amplitudes due to high tectonic activities [61–63]. CP monuments
are mostly located near Washington/Oregon states and near the Great Lakes. To recall the
previous discussion, the Pacific Northwest is also a tectonic active area with the Cascadia
subduction zone [64]. The Great Lakes region is not a strong tectonic active area but is
known for strong postglacial rebound [65] and complex geodynamics [66]. Besides, there
are other geodynamic mechanisms related to the lakes such as the lake-level variability
impacted by climate change [67]. For this type of monument, GGM + WN is often the
optimal model.
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Figure 6. Spatial distribution of the velocity uncertainty (in mm unit) for PANGA and NMT with the optimal noise model
(AIC) (
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Furthermore, the statistical analysis of Tables A7 and A8 together with Figure 7 show
that there is diversity in the results depending on the types of monuments and components.
Previous results established that the FN + WN model is the stochastic noise model mostly
selected for East and North components. Our results support that the FN + WN and PL
+ WN are still the most common noise models, but in the up component, GGM + WN is
more present as well for both PANGA and NMT solutions.
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Figure 7. Histogram view of relationship between types of monuments and stochastic noise models (selected using AIC) of
PANGA (black)/NMT (red) with the number of stations falling in each category (in brackets) (Percentage expressed as a
decimal.).

Note that the largest ratio of GGM + WN model mainly appears for the CP monuments
(44.4% Up (PANGA) and 60% Up (NMT)). Thus, we cannot conclude on the discrimination
between type of monuments and stochastic noise model. The noise properties are spatially
varying so we cannot define a general ‘preferred’ noise model for a type of monument
since it depends on the geographical distribution of the monument. The largest ratio of
RW mainly appears in DDB and SDB monuments. Moreover, the largest percentage of RW
component is prominent in the SDB and DDB types of monuments.

From Tables A7 and A8, we can see some slight variations when comparing the results
between the East and North components for each type of monument. The percentage of the
selected RW + FN + WN model is the largest for the DDB monuments on the East compo-
nent (~12.15% PANGA; 11.6% NMT), but not on the North component (~11.60% PANGA;
12.15% NMT). Instead, the probability of selecting this noise model is the largest for the
SDB monuments on the North component (~19.10% PANGA; 16.73% NMT).

This sensitivity to RW noise is not experienced for the CP and RTC monuments.
However, one needs to take into account that in our study, most of the CP monuments
are installed in tectonically active areas where higher noise amplitude can mask the RW
component. The RW component models the small-amplitude, short-duration, transient
signals originating from regional (or local) deformations, which seem to be more present in
the time series of the SDB and DDB monuments.

In addition, the stochastic noise properties of the vertical component are mostly
modeled with PL + WN. However, the GGM + WN model challenges this result in the case
of CPs where the percentage is higher, approximately 44.44% and 60.00% for PANGA and
NMT solutions, respectively. Thus, these time series of the vertical component experience
flattening at a low frequency, as discovered and analyzed by He et al. (2019) [25].

To further support this result, we draw a boxplot of the velocity uncertainties with
the selected FL + WN and optimal noise model, as shown in Figures 8 and 9, respectively.
In Figure 8, a clear trend is seen from stable monuments such as the DDBm. However,
Figure 9 does not show the differences between the types of monuments. We think that
a large number of receivers on CP experience GGM noise, which halves the trend uncer-
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tainty. The total effect is a reduction in the correlation between the type of monument and
velocity uncertainties.

Figure 8. Trend uncertainty computed with FL + WN.

Figure 9. Trend uncertainty computed by using the optimal noise model.

From Figures 8 and 9, we can also see that the RTC monument performs as well
as the DDBm. To understand this result, we should look again at Tables A7 and A8 in
the Appendix A; they display the amplitude of the white noise for the PANGA process-
ing using the AIC criteria. We notice that the amplitude of the white noise is largest
for the RTC monuments. Therefore, the RTC setup may partially mask small, transient,
geophysical signals by increasing the amplitude of the white noise, rendering this setup
disadvantageous for geophysical studies at the regional scale when looking at small ampli-
tude short-duration signals. From Tables A7 and A8, we can also see that the estimated
white noise amplitude is very different between the NMT and PANGA solutions. As
discussed in Section 1, PANGA uses GIPSY–OASIS (GIPSYX) without any scale parameter
in the Helmert transform, whereas the NMT solution results from the processing with
GAMIT/GLOBK including a scale parameter. It results in different stochastic noise proper-
ties of the time series, with a smaller scatter than the PANGA ones (~30%), and hence, a
smaller noise amplitude.

In light of this discussion, we can conclude that the higher white noise amplitude associated
with the RTC monuments can mask the presence of a RW component (see Tables A9 and A10
in Appendix A, which show the relation between the monument type and estimated noise
model) in the stochastic noise model than in other monuments (SDBm and DDBm). This
can explain why the velocity uncertainties in Figures 8 and 9 are smaller.

From the above results and analysis, we can conclude that there is reduced discrimi-
nation as to which monument performs the best over the three coordinates. The spatial
distribution of the monuments supersedes the type of monuments in the selection of the
noise model for the global, not regionally filtered, GNSS time series. Previous studies, such
as Herring et al. (2016) [34], have warned about the spatial distribution across North Amer-
ica. Williams et al. (2004) restricted their study to a small area to determine the influence of
the various types of monuments [22]. Beavan (2005) [68] concluded that monument noise is
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not the dominant factor in the stochastic noise properties of the GPS time series; hence, we
corroborate his results. Finally, we supplement CME reduction and the elimination of some
stations in active areas in the Appendix A, to explore the effect of regional filtering and
large postseismic relaxation events on monument performance. We can see that regional
filtering does not change the overall results. The DDBm is still the best monument type,
which supports what we have already previously discussed in this paper.

4. Conclusions

This work has investigated the noise properties of 568 GPS daily position time series
with a length of 10 years in North America, computed by NMT and PANGA, together with
their spatial distribution. These time series are given with respect to a global reference
frame (ITRF2008) and no regional filter has been applied.

To model the noise in the GPS time series, the following models were used: FN + WN,
RW + FN + WN, GGM + WN, and PL + WN. The selection of the optimal noise model was
based on the log-likelihood value and the information criteria (i.e., AIC, BIC, BIC_tp) to
avoid overselecting noise models with many parameters. This approach was criticized by
authors of various studies who do not recommend the use of AIC or BIC. However, when
we apply these information criteria to Monte Carlo simulations of synthetic time series, we
can demonstrate that for noise RW + FN + WN, we have a very low percentage of false
positives. Thus, if we detect RW + FN + WN noise, then we have high confidence this is
correct. On the other hand, we still have a high number of false negatives, which means that
PL + WN is still detected, while in reality, the underlying noise model is RW + FN + WN,
in agreement with previous studies [23,25]. The simulations also demonstrate that we are
able to reliably detect the GGM noise model. Statistically, we found that for around 10% of
the stations, the power spectral density shows flattening at low frequencies, which can be
better described with a Generalized Gauss Markov (GGM) noise model, further extending
the conclusions of He et al. (2019).

For the Cascadia subduction region, which is tectonically active, it is necessary to
include episodic tremor and slip in the trajectory model. Otherwise, the misfit between
observations and model is absorbed as a large random walk component, which affects the
value of the estimated linear motion and increases its uncertainty. In addition, our results
show that the selection of the RW component in the RW + FN + WN model accounts for
a non-negligible percentage when not modeling the ETS events, whereas when properly
modeled, the GGM + WN and PL + WN models are more often selected. Note that AIC
is generally more sensitive to the RW noise in the selection of the RW + FN + WN and
GGM + WN model.

Furthermore, the spatial distribution of selected noise models shows a pattern in our
case study. Stations including the RW component are generally located near the coasts
(distance <10 km from the shoreline) or in active tectonic areas (Cascadia subduction zone,
San Andreas fault). In terms of differences between the two processing strategies, the time
series from the NMT solutions are more often modeled with the GGM + WN than the
PANGA solution, therefore exhibiting a flattening of the power-spectrum. In addition,
the largest percentage of RW + FN + WN model is selected in SDB and DDB monuments
mainly for the horizontal components. The PL + WN and FN + WN models are generally
the dominant stochastic noise models for the monuments, but the GGM + WN is also often
selected for the CP monuments, especially on the Up component, which means that the
very long time series generated from monitoring the CP monuments are experiencing this
flattening at low frequency. The difference in results between AIC and BIC_tp is relatively
small for each monument in selecting the various stochastic noise models. However, we
show that the amplitude of the white noise is largest for the RTC. Therefore, the RTC setup
may partially mask small transient geophysical signals by mismodeling the amplitude
of the noise. Moreover, when investigating the relationship between the various types of
monuments and the estimation of the geophysical signals, the results emphasized that
the smallest uncertainties associated with the tectonic rate are recorded by the DDBm
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monuments for the East and North components, especially selecting the FL + WN model.
On the vertical component, the results difference between the DDBm and SDBm is not
significant. Additional results obtained by removing CME and monuments located in
tectonically active areas (such as the Cascadia subduction zone) show that the uncertainties
decrease, especially with CP and DDBm monuments on the East and North components.
CP and DDBm monuments are mostly located in tectonically active areas or close to
the coastline. Overall, we recommend the use of DDBm in noisy or tectonically active
areas. However, their stochastic noise properties are different to those in more stable areas.
Therefore, we conclude that the location of the station supersedes these types of monuments
in the estimation of the tectonic rate uncertainty, supporting previous studies [34,68].
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Appendix A

Table A1. Statistics of data gap over the 568 sites used in this study.

Data Gap
PANGA PANGA PANGA NMT NMT NMT

E N U E N U

<3% 93.7% 93.5% 97.0% 91.7% 92.6% 97.9%

Mean 1.17% 1.09% 0.84% 1.24% 1.18% 0.81%

Max 7.91% 6.41% 7.61% 6.79% 7.07% 7.20%

Min 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%

Table A2. Stochastic noise model behavior of ENU component for the 20 GPS stations selected in the
Cascadia area (PANGA).

ENU Model
No-ETS ETS

AIC BICtp AIC BICtp

E

RW + FN + WN 20.00% 15.00% 10.00% 5.00%

FN + WN 30.00% 60.00% 30.00% 45.00%

GGM + WN 0.00% 0.00% 20.00% 20.00%

PL + WN 50.00% 25.00% 40.00% 30.00%

ftp://data-out.unavco.org/pub/products/position/
ftp://data-out.unavco.org/pub/products/position/
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Table A2. Cont.

ENU Model
No-ETS ETS

AIC BICtp AIC BICtp

N

RW + FN + WN 15.00% 15.00% 0.00% 0.00%

FN + WN 20.00% 40.00% 15.00% 25.00%

GGM + WN 30.00% 25.00% 65.00% 65.00%

PL + WN 35.00% 20.00% 20.00% 10.00%

U

RW + FN + WN 0.00% 0.00% 0.00% 0.00%

FN + WN 0.00% 5.00% 0.00% 0.00%

GGM + WN 85.00% 85.00% 90.00% 90.00%

PL + WN 15.00% 10.00% 10.00% 10.00%

Table A3. Stochastic noise model behavior of ENU component for the 20 GPS stations selected in the
Cascadia area (NMT).

ENU Model
No-ETS ETS

AIC BICtp AIC BICtp

E

RW + FN + WN 20.00% 15.00% 0.00% 0.00%

FN + WN 45.00% 65.00% 40.00% 50.00%

GGM + WN 5.00% 5.00% 40.00% 30.00%

PL + WN 30.00% 15.00% 20.00% 20.00%

N

RW + FN + WN 0.00% 0.00% 0.00% 0.00%

FN + WN 40.00% 60.00% 30.00% 45.00%

GGM + WN 25.00% 20.00% 30.00% 15.00%

PL + WN 35.00% 20.00% 40.00% 40.00%

U

RW + FN + WN 0.00% 0.00% 0.00% 0.00%

FN + WN 0.00% 0.00% 0.00% 0.00%

GGM + WN 95.00% 95.00% 95.00% 95.00%

PL + WN 5.00% 5.00% 5.00% 5.00%

Table A4. Selected stochastic noise model with the AIC with varying postseismic relaxation time.

Postseismic Relaxation Time in
Days (×10)

PANGA-AIC NMT-AIC

3 8 10 13 3 8 10 13

RW + FN + WN 4 2 2 2 0 0 0 0

FN + WN 10 10 9 9 15 14 14 13

GGM + WN 32 33 35 35 30 31 31 32

PL + WN 14 15 14 14 15 15 15 15

Table A5. ETS effect on the selection of the stochastic noise.

Stochastic Noise Vartion

AIC BICtp

PANGA 35.00% 40.00%

NMT 21.67% 21.67%
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Table A6. The amplitudes (mm) of the RW component of the sites in Figure A1.

Site ENU PANGA NMT Site ENU PANGA NMT Site ENU PANGA NMT

AC15 N 1.3 1.2 P170 E 1.2 2.0 P527 E 1.8 1.3

AC34 E 1.3 1.5 P197 N 1.6 1.2 P530 N 1.2 1.2

AC67 N 2.0 1.3 P197 E 1.4 1.5 P530 E 0.8 0.7

AC67 E 0.9 1.1 P218 N 1.8 2.4 P533 N 0.7 0.5

AV12 N 1.8 1.7 P238 N 1.7 1.6 P544 E 1.0 0.8

AZGB E 1.3 1.3 P238 E 2.8 2.6 P556 E 0.7 0.8

BBDM N 1.7 1.5 P242 N 2.1 2.3 P563 N 1.2 1.1

BBDM E 1.9 2.2 P247 N 1.1 1.2 P563 E 1.2 1.1

BEMT N 0.6 0.6 P254 N 1.2 1.3 P568 E 0.6 0.5

BKAP N 0.6 0.6 P254 E 0.9 0.6 P576 N 2.1 2.2

BKMS N 1.8 1.8 P278 N 1.2 1.5 P576 E 3.2 2.4

BKMS E 0.7 1.6 P278 E 1.6 1.6 P585 N 0.8 0.8

CARH N 1.2 1.0 P284 N 1.2 1.3 P601 N 0.7 0.6

CARH E 1.5 1.5 P284 E 1.6 1.9 P607 N 0.8 0.7

CLAR N 1.0 1.3 P300 N 2.1 1.7 P610 N 0.7 0.5

CLAR E 0.9 0.5 P300 E 3.1 3.1 P623 N 0.7 0.6

COPR N 0.8 0.8 P302 N 1.1 1.2 P627 N 0.7 0.9

CPXX E 1.5 1.7 P302 E 2.7 2.7 P643 N 1.5 1.5

CSDH E 1.4 0.9 P309 E 1.7 1.4 P649 N 0.7 0.8

CTMS N 0.7 0.6 P317 N 0.6 0.5 P649 E 0.7 0.7

CVHS E 2.1 1.7 P317 E 1.5 1.1 P716 N 1.8 1.3

FMTP N 1.2 1.4 P319 N 0.9 0.7 P716 E 2.5 2.1

FMVT N 1.0 0.9 P376 N 0.9 1.4 P729 N 1.6 1.7

GVRS E 1.0 0.7 P376 E 1.1 0.7 P729 E 2.6 2.3

KBRC E 1.8 1.6 P406 N 2.5 2.3 SELD N 2.0 1.4

LBC2 N 2.1 1.8 P421 E 2.1 2.4 SELD E 0.9 0.8

LBC2 E 1.5 1.7 P457 E 0.8 1.0 TOST N 1.1 1.2

LDES N 0.6 0.6 P465 E 1.4 1.3 TXTA N 2.3 2.3

OKDT N 1.1 1.0 P473 E 1.1 0.9 VNCO N 1.4 1.2

OPBL N 0.5 0.6 P491 N 0.8 0.7 VNCO E 0.9 0.8

P003 E 0.9 0.9 P504 N 0.7 0.6 WCHS N 0.9 1.2

P124 N 1.2 0.9 P511 N 0.8 0.6 WCHS E 1.6 1.2

P125 E 0.8 0.9 P526 N 0.8 0.7 WHC1 E 0.6 0.8

P169 E 0.5 0.5 P526 E 1.4 1.0 WNRA N 1.3 1.1

P170 N 1.5 1.4 P527 N 1.4 1.3 WNRA E 0.8 0.8
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Table A7. Amplitude (mm) of white noise vs. type of monument (PANGA).

PANGA
E N U

µ σ µ σ µ σ

RTC 0.66 0.35 0.75 0.32 0.6 1.46

CP 0.47 0.35 0.74 0.32 0.25 0.82

DDB 0.66 0.22 0.72 0.32 0.55 1.19

SDB 0.67 0.27 0.75 0.34 0.71 1.27

Table A8. Amplitude (mm) of white noise vs. type of monument (NMT).

NMT
E N U

µ σ µ σ µ σ

RTC 0.62 0.31 0.53 0.27 0.29 0.76

concrete 0.55 0.40 0.56 0.26 0.27 0.76

DDB 0.58 0.18 0.53 0.19 0.16 0.55

SDB 0.59 0.20 0.55 0.25 0.15 0.51

Table A9. Monument type vs. noise model PANGA (AIC).

ENU Monument Type RW + FN + WN FN + WN GGM +
WN PL + WN

E

Concrete pier 4.44% 28.89% 11.11% 55.56%

Deep-drilled braced 12.15% 49.72% 5.52% 32.60%

Roof/chimney 5.06% 44.30% 7.59% 43.04%

Shallow-drilled braced 8.75% 46.77% 6.46% 38.02%

N

Concrete pier 4.44% 44.44% 22.22% 28.89%

Deep-drilled braced 11.60% 47.51% 11.05% 29.83%

Roof/chimney 6.33% 26.58% 12.66% 54.43%

Shallow-drilled braced 19.01% 39.54% 6.84% 34.60%

U

Concrete pier 0.00% 0.00% 44.44% 55.56%

Deep-drilled braced 0.55% 2.76% 8.29% 88.40%

Roof/chimney 0.00% 3.80% 21.52% 74.68%

Shallow-drilled braced 0.00% 3.80% 13.69% 82.51%
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Table A10. Monument type vs. noise model NMT.

ENU Monument Type RW + FN + WN FN + WN GGM +
WN PL + WN

E

Concrete pier 2.22% 31.11% 15.56% 51.11%

Deep-drilled braced 11.60% 43.09% 6.08% 39.23%

Roof/chimney 2.53% 46.84% 6.33% 44.30%

Shallow-drilled braced 9.51% 39.54% 9.51% 41.44%

N

Concrete pier 2.22% 51.11% 20.00% 26.67%

Deep-drilled braced 12.15% 45.86% 6.63% 35.36%

Roof/chimney 3.80% 39.24% 15.19% 41.77%

Shallow-drilled braced 16.73% 44.87% 6.84% 31.56%

U

Concrete pier 0.00% 4.44% 60.00% 35.56%

Deep-drilled braced 0.55% 4.97% 33.15% 61.33%

Roof/chimney 0.00% 0.00% 27.85% 72.15%

Shallow-drilled braced 0.00% 2.66% 32.32% 65.02%

Figure A1. Spatial distribution of the RW sites for PANGA/NMT (the rectangular area in the lower
left corner of the figure is a zoom view of all the stations under P406 without station name mark).

As mentioned in the previous section on ‘GPS processing’, the PANGA and NMT
solutions did not implement any regional filtering. We extract the regional common
mode error (CME) on the GPS network for both PANGA and NMT solution. For filtering
on the CME, we implement the VBPCA method to extract CME (Li et al., 2020). The
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VBPCA method imposed a priori distributions on the model parameters and estimated
the hyperparameters by maximizing the evidence of observed signals. This method can
naturally handle missing data in the Bayesian framework and utilizes the variational
expectation–maximization iterative algorithm to search the CME for the incomplete GNSS
position time series. Moreover, it can automatically select the optimal number of principal
components for data reconstruction and be more reliable against the overfitting problem
than other statistical signal decomposition methods. The boxplots with CME filter of the
velocity uncertainties with the selected FL + WN and optimal noise model are shown
in Figure A2a. From Figure A2a together with Figures 8 and 9, we can see that regional
filtering does not change the overall results. The DDBm is still the best monument type.
The CME removal is only interesting looking at the CP monuments. However, we only
have 45 CP in this study. In addition, some of the 568 analyzed sites were located in a
region that was known to contain tectonic or volcanic transient events, which will affect the
stochastic noise properties and, therefore, the monument performance. Thus, we removed
these sites (reducing the total number to 538 sites). The boxplot figures after filtering
the CME and with optimal model selection are shown in Figure A2b. Overall, the filter
improves only the results with CP monuments. These monuments are located in the Pacific
Northwest, with postseismic relaxation, and this result supports what we have already
said in this study.

Figure A2. Boxplot with CME filter with FN + WN model for PANGA (P.) and NMT (N.) solution. (a) Boxplot with CME
filter with FN + WN model for PANGA (P.) and NMT (N.). (b) Boxplot with CME filter with FN + WN model for PANGA
and NMT (large postseismic relaxation sites removed).
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Appendix B

For the postseismic relaxation or Episodic Tremor and Slip events, we assume that the
observations are the sum of a deterministic model and stochastic noise. This deterministic
model is as follows:

X =
nP
∑

i=0
pi(t − tR)

i +
nJ

∑
i=1

bj H(t − tj)

+
nF
∑

i=1
si sin(ωit) + ci cos(ωit)

+
nT
∑

i=1
ei(1 − exp(−(t − ti)/Ti))

+
nL
∑

j=1
aj log(1 + (t − tj)/Tj))

+
nT
∑

k=1

uk
2 [tanh((t − tk)/Tk))− 1]

nL
∑

l=1
al × fl(t)

(A1)

where pi are the coefficients of a np degree polynomial. By default, np = 1 means a linear
trend. H(t) is the Heaviside step function and used to model offsets with amplitudes bj.
An annual and semiannual signal are commonly included in the model and therefore have
their own keywords, ’seasonal’ and ’halfseasonal’, in Hector [43]. In the equation, their
angular velocities are represented by ωi. Other periodic signals need to be entered using the
keyword ’PeriodicSignals’, followed by a list of their periods in days. The time of the slow
slip event and the delay of the postseismic deformation are required as input parameters
for the estimation of the ETS using Hector with a hyperbolic tangent by providing two
parameters, tk and Tk.
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Appendix C

Table A11. Monument types of the analyzed 568 sites: concrete pier (CP), Deep-drilled brace (DDB), Shallow-drilled brace
(SDB), and Roof top/Chimney (RTC).

Site Type Site Type Site Type Site Type Site Type Site Type Site Type Site Type

1NSU RTC CORV SDB MAT2 SDB P114 DDB P256 DDB P420 DDB P557 DDB ROCK SDB

AB07 SDB COVG RTC MHCB RTC P115 DDB P257 SDB P421 DDB P558 DDB SASK CP

AB22 SDB CPXX SDB MICW CP P116 DDB P258 SDB P422 DDB P563 DDB SCIA SDB

AB43 SDB CRBT SDB MIDA DDB P117 DDB P259 DDB P423 DDB P566 SDB SDHL SDB

AB44 SDB CRU1 SDB MIDS CP P118 SDB P262 DDB P427 DDB P568 SDB SEAT RTC

AC15 DDB CSCI SDB MIG1 SDB P119 SDB P267 DDB P429 DDB P569 SDB SEDR DDB

AC20 SDB CSDH SDB MIHO CP P121 DDB P268 DDB P432 DDB P570 SDB SELD CP

AC27 SDB CSST SDB MIIR CP P124 DDB P272 DDB P436 DDB P572 DDB SHE2 CP

AC31 SDB CTBR RTC MLFP SDB P125 DDB P273 SDB P437 DDB P576 SDB SHIN DDB

AC34 SDB CTDM SDB MNMC SDB P128 DDB P274 SDB P439 DDB P579 DDB SHLD DDB

AC39 SDB CTGU RTC MOIL DDB P132 DDB P275 DDB P442 DDB P580 SDB SHOS DDB

AC41 SDB CTMS SDB MPLE CP P134 SDB P276 DDB P445 SDB P581 DDB SHRV RTC

AC59 SDB CTPU RTC MPWD SDB P138 DDB P278 SDB P448 SDB P583 SDB SIBY CP

AC63 SDB CVHS SDB MSOL CP P139 SDB P280 DDB P449 SDB P585 SDB SMEL DDB

AC67 SDB DDSN SDB MTFV RTC P141 SDB P283 DDB P451 DDB P592 DDB SNFD RTC

ADRI CP DOBS CP NANO CP P148 SDB P284 SDB P457 SDB P593 SDB SPIC DDB

AGMT SDB DRAO CP NCPO RTC P154 SDB P285 DDB P460 DDB P595 SDB SPK1 RTC

AHID SDB DSSC SDB NCSW RTC P156 DDB P287 SDB P461 DDB P599 SDB SPMS SDB

AL30 RTC DUBO CP NEAH CP P157 SDB P288 SDB P462 SDB P601 SDB STJO CP

AL50 CP DVPB SDB NEDR RTC P160 DDB P289 SDB P463 SDB P606 SDB SVIN SDB

AL60 RTC ECFS SDB NEGI RTC P163 DDB P290 SDB P465 DDB P607 SDB TABL SDB

ALBH CP ECSD DDB NHRG SDB P164 SDB P293 SDB P466 DDB P610 SDB TBLP SDB

ALGO CP ELIZ SDB NHUN RTC P165 DDB P294 DDB P467 SDB P611 SDB THCP SDB

ALPP SDB ESCU CP NJTW RTC P166 SDB P295 SDB P468 DDB P615 SDB THU3 CP

ARCM RTC EWPP SDB NMRO RTC P167 SDB P296 SDB P469 SDB P616 DDB TOIY DDB

ARPG RTC FERN DDB NMSF RTC P168 SDB P297 SDB P471 DDB P617 SDB TONO DDB

AV01 SDB FGST SDB NOR3 CP P169 SDB P300 DDB P472 DDB P618 SDB TORP SDB

AV02 SDB FMTP SDB NYBH RTC P170 SDB P301 DDB P473 SDB P621 SDB TOST SDB

AV06 SDB FMVT SDB NYBT RTC P171 SDB P302 DDB P474 DDB P622 SDB TPW2 SDB

AV07 SDB FOOT DDB NYCL RTC P174 SDB P305 DDB P476 SDB P623 DDB TWHL SDB

AV08 SDB FORE SDB NYCP RTC P175 DDB P306 DDB P478 SDB P626 SDB TXAB RTC

AV09 SDB FRDN CP NYDV RTC P178 SDB P309 DDB P480 DDB P627 SDB TXAM RTC

AV10 SDB FRED DDB NYFD RTC P180 SDB P312 DDB P482 DDB P636 DDB TXCH CP

AV11 SDB GAAT RTC NYFS RTC P182 DDB P313 DDB P483 DDB P643 SDB TXCO CP

AV12 SDB GARF RTC NYFV RTC P183 SDB P314 SDB P484 SDB P649 DDB TXDR RTC

AV16 SDB GARL DDB NYHC RTC P185 SDB P315 DDB P485 SDB P651 DDB TXEL RTC

AV18 SDB GOBS SDB NYHS RTC P186 DDB P316 DDB P486 DDB P653 SDB TXHE RTC
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Table A11. Cont.

Site Type Site Type Site Type Site Type Site Type Site Type Site Type Site Type

AZGB RTC GODE CP NYLV RTC P187 SDB P317 SDB P490 SDB P674 DDB TXLF RTC

BAIE CP GOSH DDB NYMD RTC P188 SDB P318 DDB P491 SDB P675 SDB TXLL RTC

BAMF SDB GVRS SDB NYML RTC P189 SDB P319 DDB P504 SDB P677 DDB TXPE RTC

BAR1 SDB HAMP RTC NYON RTC P192 DDB P324 SDB P511 DDB P678 DDB TXPR RTC

BAYR CP HCMN SDB NYPD RTC P196 DDB P326 SDB P513 SDB P683 DDB TXSA RTC

BBDM SDB HLFX CP NYPF RTC P197 SDB P332 SDB P514 DDB P684 SDB TXSN RTC

BBID SDB HOGS CP NYST RTC P206 DDB P341 SDB P515 DDB P698 SDB TXST RTC

BBRY SDB HUNT SDB NYWL RTC P208 SDB P344 DDB P516 DDB P700 SDB TXTA RTC

BCOV SDB HVYS SDB NYWT RTC P210 DDB P354 SDB P519 DDB P706 DDB TXTY RTC

BEMT SDB HWUT CP OHAS RTC P211 DDB P356 SDB P523 DDB P710 SDB TXVA RTC

BEPK SDB IDDR CP OKDT RTC P212 DDB P367 DDB P525 SDB P716 SDB TXWA RTC

BILL DDB KBRC SDB OPBL SDB P213 DDB P370 SDB P526 SDB P720 SDB TXWF CP

BKAP SDB KNGS RTC OPCL SDB P215 DDB P371 SDB P527 DDB P726 DDB UCLU CP

BKMS SDB KNTN CP ORMT SDB P216 DDB P372 DDB P528 DDB P727 SDB UNIV CP

BLW2 CP KOKB RTC OVLS SDB P218 DDB P374 DDB P529 DDB P729 DDB USLO SDB

BLYT SDB KTBW SDB OXYC SDB P227 SDB P376 DDB P530 DDB P741 RTC VALD CP

BMHL SDB KYBO RTC P002 DDB P228 SDB P377 DDB P531 DDB P742 RTC VCAP RTC

BREW CP KYVW SDB P003 DDB P230 SDB P387 DDB P532 DDB PARY RTC VDCY SDB

BRPK SDB LACR DDB P091 SDB P231 SDB P388 DDB P533 DDB PCOL RTC VIMT SDB

BSMK RTC LAND DDB P092 SDB P232 DDB P394 DDB P535 DDB PGC5 CP VNCO SDB

BSRY SDB LANS CP P093 SDB P233 DDB P395 DDB P536 DDB PSDM SDB VNCX SDB

BTDM SDB LBC2 SDB P094 SDB P234 DDB P397 SDB P537 DDB PTAL SDB VNPS SDB

BURN SDB LDES SDB P095 DDB P237 SDB P398 DDB P538 DDB PVE3 CP VTIS SDB

CABL SDB LDSW SDB P099 SDB P238 DDB P401 DDB P540 DDB PVRS SDB WCHS SDB

CAND DDB LEBA CP P100 DDB P241 SDB P402 DDB P543 DDB PWEL SDB WHC1 RTC

CARH SDB LEWI DDB P102 SDB P242 DDB P404 DDB P544 DDB QCY2 DDB WIDC SDB

CAST DDB LFRS SDB P104 DDB P243 SDB P406 DDB P546 DDB QUAD SDB WMAP SDB

CDMT SDB LINH RTC P106 DDB P244 SDB P408 DDB P547 DDB RAMT SDB WNRA SDB

CEDA DDB LKCP SDB P108 SDB P247 SDB P409 DDB P549 DDB RCA2 SDB WOMT SDB

CHWK SDB LL01 SDB P109 DDB P250 SDB P411 DDB P550 DDB REDM SDB WRHS SDB

CIRX SDB LMCN RTC P110 SDB P252 DDB P412 DDB P551 DDB RG07 SDB WVRA RTC

CJMS SDB LORS SDB P111 SDB P253 SDB P414 DDB P553 DDB RG09 SDB YBHB CP

CLAR SDB LOWS SDB P112 SDB P254 SDB P417 DDB P554 DDB RHCL SDB ZAB1 RTC

COPR SDB MASW SDB P113 DDB P255 DDB P418 DDB P556 DDB RNCH SDB ZDV1 RTC
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